SUMMARY
The purpose of this study was to evaluate the effect of different heat-treatment strategies for a ceramic primer on the shear bond strength of a 10-methacryloyloxydecyl-dihydrogen-phosphate (MDP)-based resin cement to a yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic. Specimens measuring 4.5 × 3.5 × 4.5 mm3 were produced from Y-TZP presintered cubes and embedded in polymethyl methacrylate (PMMA). Following finishing, the specimens were cleaned using an ultrasound device and distilled water and randomly divided into 10 experimental groups (n=14) according to the heat treatment of the ceramic primer and aging condition. The strategies used for the experimental groups were: GC (control), without primer; G20, primer application at ambient temperature (20°C); G45, primer application + heat treatment at 45°C; G79, primer application + heat treatment at 79°C; and G100, primer application + heat treatment at 100°C. The specimens from the aging groups were submitted to thermal cycling (6000 cycles, 5°C/55°C, 30 seconds per bath) after 24 hours. A cylinder of MDP-based resin cement (2.4 mm in diameter) was constructed on the ceramic surface of the specimens of each experimental group and stored for 24 hours at 37°C. The specimens were submitted to a shear bond strength test (n=14). Thermal gravimetric analysis was performed on the ceramic primer. The data obtained were statistically analyzed by two-way analysis of variance and the Tukey test (α=0.05). The experimental group G79 without aging (7.23 ± 2.87 MPa) presented a significantly higher mean than the other experimental groups without aging (GC: 2.81 ± 1.5 MPa; G20: 3.38 ± 2.21 MPa; G100: 3.96 ± 1.57 MPa), showing no difference from G45 only (G45: 6 ± 3.63 MPa). All specimens of the aging groups debonded during thermocycling and were considered to present zero bond strength for the statistical analyses. In conclusion, heat treatment of the metal/zirconia primer improved bond strength under the initial condition but did not promote stable bonding under the aging condition.