Objective-The short allele of a functional polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) has been shown to interact with stressful life events to predict depression in otherwise healthy individuals. Whether the short allele increases risk for depression associated with the stress of a chronic illness has not been established.Method-In a cross-sectional genetic association study, the authors examined the association of 5-HTTLPR with current depression (measured by the Computerized Diagnostic Interview Schedule), perceived stress (measured by the Perceived Stress Scale), and 24-hour urinary norepinephrine excretion in 557 outpatients with chronic coronary disease.Results-Among individuals carrying an s allele, 25% (97 of 383) had current depression, compared with 17% (29 of 174) of l/l homozygotes. The unadjusted odds ratio was 1.6, with a 95% confidence interval (CI) of 1.0-2.6; the age-and gender-adjusted odds ratio was also 1.6 (95% CI= 1.0-2.5). Participants carrying an s allele had a higher mean score for perceived stress than l/l homozygotes (5.4 versus 4.7) and a higher rate of moderate or high perceived stress (adjusted odds ratio=1.6, 95% CI=1.1-2.3). Mean 24-hour norepinephrine excretion was higher in s allele carriers (55.6 versus 50.2 μg/day), who were more likely to have norepinephrine values in the highest quartile (adjusted odds ratio=1.7, 95% CI=1.0-3.0).Conclusions-Among patients with chronic illness, carriers of the s allele of 5-HTTLPR are more vulnerable to depression, perceived stress, and high norepinephrine secretion. These factors may contribute to worse cardiovascular outcomes in these patients.The serotonin, or 5-HT (5-hydroxytryptamine), system is critically involved in the pathophysiology of mood and anxiety disorders, and drugs that target serotonergic neurotransmission are efficacious for the treatment of these disorders (1). The serotonin transporter (5-HTT) plays an important role in serotonergic neurotransmission by facilitating reuptake of 5-HT from the synaptic cleft. A repeat of 20-23 base pairs has been observed as a motif within a polymorphic region of the serotonin transporter gene, and it occurs as two prevalent alleles: one consisting of 14 repeats (the short allele variant) and another of 16 repeats (the long allele variant). This functional polymorphism in the 5-regulatory promoter region, termed 5-HTTLPR (5-HTT-gene-linked polymorphic region), alters transcription of the serotonin transporter gene (2). Specifically, the short allele of the 5-HTTLPR polymorphism is thought to reduce transcription efficiency for the gene, resulting in decreased expression of the serotonin transporter and decreased serotonin uptake in lymphoblast cell lines and blood platelets (3,4) and decreased availability of the serotonin transporter in human imaging studies (5). The s allele appears to exert its effect independent of s allele load, i.e., in a dominant manner (6).With remarkable consistency (exceptions are studies by Surtees et al. [7] and Gill...