2021
DOI: 10.1177/15500594211018545
|View full text |Cite
|
Sign up to set email alerts
|

Depression Diagnosis Modeling With Advanced Computational Methods: Frequency-Domain eMVAR and Deep Learning

Abstract: Electroencephalogram (EEG)-based automated depression diagnosis systems have been suggested for early and accurate detection of mood disorders. EEG signals are highly irregular, nonlinear, and nonstationary in nature and are traditionally studied from a linear viewpoint by means of statistical and frequency features. Since, linear metrics present certain limitations and nonlinear methods have proven to be an efficient tool in understanding the complexities of the brain in the identification of underlying behav… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

1
7

Authors

Journals

citations
Cited by 19 publications
(5 citation statements)
references
References 95 publications
0
4
0
1
Order By: Relevance
“…Los clasificadores utilizados fueron SVM, Naive Bayes, K-vecino más cercano y análisis discriminante lineal, de los cuales Naive Bayes fue el de mayor precisión [Avots et al, 2022]. Un estudio con una muestra balanceada de 30 sujetos, desarrolló un un método híbrido utilizando la arquitectura ResNet-50 preentrenado y una memoria a corto plazo (LSTM) para capturar información específica de la depresión y posteriormente se compara con un marco de Aprendizaje Automático convencional que tiene características de conectividad eMVAR la cual descompone las señales del EEG en patrones espaciales, que se extraen de 2 clases, se construye un vector de características y se usa como entrada para el clasificador para ambos marcos obteniendo una precisión del 95.9% [Uyulan et al, 2022].…”
Section: Resultsunclassified
“…Los clasificadores utilizados fueron SVM, Naive Bayes, K-vecino más cercano y análisis discriminante lineal, de los cuales Naive Bayes fue el de mayor precisión [Avots et al, 2022]. Un estudio con una muestra balanceada de 30 sujetos, desarrolló un un método híbrido utilizando la arquitectura ResNet-50 preentrenado y una memoria a corto plazo (LSTM) para capturar información específica de la depresión y posteriormente se compara con un marco de Aprendizaje Automático convencional que tiene características de conectividad eMVAR la cual descompone las señales del EEG en patrones espaciales, que se extraen de 2 clases, se construye un vector de características y se usa como entrada para el clasificador para ambos marcos obteniendo una precisión del 95.9% [Uyulan et al, 2022].…”
Section: Resultsunclassified
“… PDC quantifies the direct influence from time-series j to time-series i , after discounting the effect of all the other time series. The square exponents enhance the accuracy and stability of the estimates while the denominator part permits the normalization of outgoing connections by the inflows [47].…”
Section: Methodsmentioning
confidence: 99%
“…In a study conducted in 2023, structural MRI images were utilized to predict aspects of late-life depression, including anhedonia, suicidal tendencies, appetite, sleep disturbances, and anxiety (Cao et al, 2023). An EEG-based automated diagnostic system for depression has been suggested for early and accurate detection of mood disorders (Uyulan et al, 2022). In addition to artificial intelligence research in the field of neuroimaging mentioned above, studies analyzing patients' voices have also become a focal point in the diagnosis of depression due to the often pronounced changes in energy, communication abilities, and emotions seen in individuals with this condition.…”
Section: Depressionmentioning
confidence: 99%