The work demonstrated the use of natural rubber for topical drug delivery. The first objective was to fabricate a porous deproteinized natural rubber film loaded with silver nanoparticles. Characterizing and assessing its formulation was the second objective. Surface pH, mechanical properties, swelling ratio, erosion, moisture vapor transmission rate, scanning electron microscopy/energy dispersive X-ray analysis, and X-ray diffraction were evaluated. In vitro studies and antibacterial activity were assessed. It was discovered that silver nanoparticles could enter the film and that their concentrations ranged between 7.25 and 21.03 µg/cm2. The pH of the film’s surface was 7.00. The mechanical properties of the film with silver nanoparticle loading differed from the blank film. After adding silver nanoparticles, the film eroded faster than before, but the swelling ratio was not affected significantly. Increased time utilization had an impact on the moisture vapor transmission rate of the film. Silver nanoparticles released easily from the film while there was less permeability. The dead pig-ear skin had significant silver nanoparticle accumulation. Potent antibacterial activity was seen in the film containing silver nanoparticles. The silver nanoparticle-loaded film may be used as a wound dressing for a topical film that promotes wound healing while also protecting the area from infection.