Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Compounds with a kagome lattice exhibit intriguing properties and the charge density wave (CDW) adds an additional layer of interest to research on them. In this study, we investigate the temperature and magnetic field dependent electrical properties under a chemical substitution and hydrostatic pressure of ScV6Sn6, a non-magnetic charge density wave (CDW) compound. Substituting 5 % Cr at the V site or applying 1.5 GPa of pressure shifts the CDW to 50 K from 92 K. This shift is attributed to the movement of the imaginary phonon band, as revealed by the phonon dispersion relation. The longitudinal and Hall resistivities respond differently under these stimuli. The magnetoresistance (MR) maintains its quasilinear behavior under pressure, but it becomes quadratic after Cr substitution. The anomalous Hall-like behavior of the parent compound persists up to the respective CDW transition under pressure, after which it sharply declines. In contrast, the nonlinear Hall resistivity of Cr substituted compounds follows a two-band model and originates from the multi carrier effect. These results clearly highlight the role of phonon contributions in the CDW transition and call for further investigation into the origin of the anomalous Hall-like behavior in the parent compound.
Compounds with a kagome lattice exhibit intriguing properties and the charge density wave (CDW) adds an additional layer of interest to research on them. In this study, we investigate the temperature and magnetic field dependent electrical properties under a chemical substitution and hydrostatic pressure of ScV6Sn6, a non-magnetic charge density wave (CDW) compound. Substituting 5 % Cr at the V site or applying 1.5 GPa of pressure shifts the CDW to 50 K from 92 K. This shift is attributed to the movement of the imaginary phonon band, as revealed by the phonon dispersion relation. The longitudinal and Hall resistivities respond differently under these stimuli. The magnetoresistance (MR) maintains its quasilinear behavior under pressure, but it becomes quadratic after Cr substitution. The anomalous Hall-like behavior of the parent compound persists up to the respective CDW transition under pressure, after which it sharply declines. In contrast, the nonlinear Hall resistivity of Cr substituted compounds follows a two-band model and originates from the multi carrier effect. These results clearly highlight the role of phonon contributions in the CDW transition and call for further investigation into the origin of the anomalous Hall-like behavior in the parent compound.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.