In most of the reported n-n heterojunction photocatalysts, both the conduction and valence bands of one semiconductor are more negative than those of the other semiconductor. In this work, we designed and synthesized a novel n-n heterojunction photocatalyst, namely CdS-ZnWO4 heterojunctions, in which ZnWO4 has more negative conduction band and more positive valence band than those of CdS. The hydrogen evolution rate of CdS-30 mol %-ZnWO4 reaches 31.46 mmol h(-1) g(-1) under visible light, which is approximately 8 and 755 times higher than that of pure CdS and ZnWO4 under similar conditions, respectively. The location of the surface active sites is researched and a plausible mechanism of performance enhancement by the tuning of the structure is proposed based on the photoelectrochemical characterization. The results illustrate that this kind of nonconventional n-n heterojunctions is also suitable and highly efficient for solar hydrogen evolution.