We describe a randomized algorithm for computing the trapezoidal decomposition of a simple polygon. Its expected running time is linear in the size of the polygon. By a well-known and simple linear time reduction, this implies a linear time algorithm for triangulating a simple polygon. Our algorithm is considerably simpler than Chazelle's (1991) celebrated optimal deterministic algorithm and, hence, positively answers his question of whether a simpler randomized algorithm for the problem exists. The new algorithm can be viewed as a combination of Chazelle's algorithm and of non-optimal randomized algorithms due to Clarkson et al. (1991) and to Seidel (1991), with the essential innovation that sampling is performed on subchains of the initial polygonal chain, rather than on its edges. It is also essential, as in Chazelle's algorithm, to include a bottom-up preprocessing phase previous to the top-down construction phase.