2022
DOI: 10.29137/umagd.1038899
|View full text |Cite
|
Sign up to set email alerts
|

Derin Öğrenme ile Dudak Okuma Üzerine Detaylı Bir Araştırma

Abstract: Derin öğrenme çalışmaları ile bilgisayarlı görü ve ses tanıma gibi alanlarda çok başarılı sonuçlar elde edilmiştir. Derin öğrenmenin bu alanlardaki başarıları ile insanların hayatını kolaylaştıran teknolojiler geliştirilmektedir. Bu teknolojilerden biri de ses tanıma cihazlarıdır. Yapılan araştırmalar sonucunda ses tanıma cihazlarının, gürültüsüz ortamlarda iyi sonuçlar vermesine rağmen gürültülü ortamlarda ise başarılarının düştüğü görülmektedir. Derin öğrenme yöntemleri ile gürültülü ortamlarda yaşanan ses t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 101 publications
0
2
0
Order By: Relevance
“…Discuss the limitations of these traditional approaches, including sensitivity to noise, lighting conditions, and speaker variability. [5]Advancements in Deep Learning for Lip Reading: Review recent studies and research papers that have leveraged deep learning techniques, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer models, for lip reading tasks. Highlight how deep learning models have improved performance in lip reading, including enhanced accuracy, robustness to environmental factors, and the ability to learn complex temporal patterns.…”
Section: E Organization Of the Papermentioning
confidence: 99%
See 1 more Smart Citation
“…Discuss the limitations of these traditional approaches, including sensitivity to noise, lighting conditions, and speaker variability. [5]Advancements in Deep Learning for Lip Reading: Review recent studies and research papers that have leveraged deep learning techniques, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Transformer models, for lip reading tasks. Highlight how deep learning models have improved performance in lip reading, including enhanced accuracy, robustness to environmental factors, and the ability to learn complex temporal patterns.…”
Section: E Organization Of the Papermentioning
confidence: 99%
“…Leveraging the power of deep learning for lip readingbased text extraction and translation presents a cutting-edge approach to enhance communication accessibility and bridge linguistic gaps. [5] The primary objective of this research is to develop a robust system that utilizes deep learning techniques to accurately interpret and extract textual information from lip movements.…”
Section: Introductionmentioning
confidence: 99%