Derivation and Validation of a Machine Learning Approach to Detect and Mitigate Biases in Healthcare Data
Faris F. Gulamali,
Ashwin S. Sawant,
Lora Liharska
et al.
Abstract:The adoption of diagnosis and prognostic algorithms in healthcare has led to concerns about the perpetuation of bias against disadvantaged groups of individuals. Deep learning methods to detect and mitigate bias have revolved around modifying models, optimization strategies, and threshold calibration with varying levels of success. Here, we generate a data-centric, model-agnostic, task-agnostic approach to evaluate dataset bias by investigating the relationship between how easily different groups are learned a… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.