Episome Ft'.114 lac+ (F42-114) was transferred into Salmonella typhimurium carrying an F'his+ (FS400) episome, and fused episome F't814 lac+, his+ (F42-400) was obtained. Episome F42-400 could be transferred to S. typhimurium, Escherichia coli and Klebsiella pneumoniae. Identification of the episome was based on: (i) temperature sensitivity of the Lac+ and His+ phenotypes; (ii) the fact that Fsegregants, obtained after temperature curing or acridine orange curing, were simultaneously Lac-and His-; and (iii) linkage of lac+ with his+ in episomal transfers to E. coli and S. typhimurium. The frequency of episome transfer was influenced by the genotype of the donor. Plasmid LT2, prevalent in S. typhimurium LT2 strains, was suggested to be responsible for the low fertility of S. typhimurium donors. Episome F42-400 was capable of chromosome mobilization, and the extent of chromosome mobilization was not influenced by the presence or absence of the histidine region on the donor chromosome. Growth in a defined medium with acridine orange was able to cure F42-400. The frequency of curing was increased (the frequency of His+ cells was 0.0001%) if the cells were grown at 40 C in the presence of acridine orange. Selection for temperature-resistant Lac+, His+ derivatives in a strain without histidine deletion yielded Hfr strains. However, similar and stronger selections in strains without the chromosomal histidine region failed to yield Hfr strains. Our inability to obtain Hfr's in strains without the chromosomal histidine region was explained by assuming that the episome F42-400 has lost the F sites involved in integration into the S. typhimurium chromosome.