The aim of this work is to investigate the fracture toughness and deformation of silk fiber (SF)-reinforced zeolite (Z)/high density polyathylene (HDPE) composites. The chopped SFs are arranged in the thickness middle of the dry mixture of Z/HDPE powder that has been prepared in a mold. Composites were produced by the compression molding to produce double-edge notch tensile (DENT). The fracture toughness characterization was carried out based on essential work of fracture method. The results show that the presence of SF increased the essential fracture work even though the non-essential fracture work for Z/HDPE was higher than S-Z/HDPE. The evolution of plastic zone growth coincides with the growth of the fracture process zone (FPZ) whose height has no effect on energy consumption.