2014
DOI: 10.1155/2014/420123
|View full text |Cite
|
Sign up to set email alerts
|

Derivation of Field Equations in Space with the Geometric Structure Generated by Metric and Torsion

Abstract: This paper is devoted to the derivation of field equations in space with the geometric structure generated by metric and torsion tensors. We also study the geometry of the space generated jointly and agreed on by the metric tensor and the torsion tensor. We showed that in such space the structure of the curvature tensor has special features and for this tensor we obtained analog Ricci-Jacobi identity and evaluated the gap that occurs at the transition from the original to the image and vice versa, in the case … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3

Citation Types

0
3
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 12 publications
0
3
0
Order By: Relevance
“…HIS work is dedicated to the theory of the n Y space, analytically, this space is an n-dimensional differentiable real manifold, at each point of which are given metric and torsion tensors [29][30][31][32][33]. From a geometrical perspective, such space can be defined as a real n-dimensional metric space equipped with a connection on the tangent bundle (that connection can be with torsion); this metric is generated by a given symmetrical covariant tensor, and the torsion of the connection of the space coincides with given torsion tensor [1][2][3][4][5][29][30][31][32][33].…”
Section: Introductionmentioning
confidence: 99%
“…HIS work is dedicated to the theory of the n Y space, analytically, this space is an n-dimensional differentiable real manifold, at each point of which are given metric and torsion tensors [29][30][31][32][33]. From a geometrical perspective, such space can be defined as a real n-dimensional metric space equipped with a connection on the tangent bundle (that connection can be with torsion); this metric is generated by a given symmetrical covariant tensor, and the torsion of the connection of the space coincides with given torsion tensor [1][2][3][4][5][29][30][31][32][33].…”
Section: Introductionmentioning
confidence: 99%
“…The hypersurface theory in the n Y space has attracted a lot of attention after its introduction [1,2], since it has many applications in theoretical and applied physics and electromagnetic gravity.…”
Section: Introductionmentioning
confidence: 99%
“…Intrinsic geometrical properties have been considered in [1][2][3][4][5][6][7][8][9] a space and their context and the relations with the ambient space n Y within [9].…”
Section: Introductionmentioning
confidence: 99%