The availability of human stem cells heralds a new era for modeling normal and pathologic tissues and developing therapeutics. For example, the in vitro recapitulation of normal and aberrant neurogenesis holds significant promise as a tool for de novo modeling of neurodevelopmental and neurodegenerative diseases. Translational applications include deciphering brain development, function, pathologies, traditional medications, and drug discovery for novel pharmacotherapeutics. For the latter, human stem cell-based assays represent a physiologically relevant and high-throughput means to assess toxicity and other undesirable effects early in the drug development pipeline, avoiding latestage attrition whilst expediting proof-of-concept of genuine drug candidates. Here we consider the potential of human embryonic, adult, and induced pluripotent stem cells for studying neurological disorders and preclinical drug development.