2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2012
DOI: 10.1109/icassp.2012.6288441
|View full text |Cite
|
Sign up to set email alerts
|

Derivation of monopulse angle accuracy for phased array radar to achieve Cramer-Rao lower bound

Abstract: Derivation of monopulse angle accuracy for phased array radar to achieve Cramer-Rao lower bound is presented in this paper. Antenna element positions originating from antenna center are used for difference beam taper in this monopulse angle estimation. For uniform linear array, the accuracy is 1.16 times higher than conventional monopulse method. In other words, SNR can be reduced by 1.3 dB to achieve required angle accuracy. Suboptimal difference beamforming taper for the subarray-based digital beamforming ra… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2013
2013
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(2 citation statements)
references
References 5 publications
0
1
0
1
Order By: Relevance
“…It has been widely used in precision tracking radar to achieve accurate tracking and measuring of the targets. It is also applied in various kinds of modern search radar to improve the angle estimation accuracy [4–6]. In practical application, the antenna array is usually divided into four quadrants, and the received signals of these quadrants are transmitted to the sum–difference network to form the sum signal, the delta‐azimuth signal and the delta‐elevation signal [7, 8].…”
Section: Introductionmentioning
confidence: 99%
“…It has been widely used in precision tracking radar to achieve accurate tracking and measuring of the targets. It is also applied in various kinds of modern search radar to improve the angle estimation accuracy [4–6]. In practical application, the antenna array is usually divided into four quadrants, and the received signals of these quadrants are transmitted to the sum–difference network to form the sum signal, the delta‐azimuth signal and the delta‐elevation signal [7, 8].…”
Section: Introductionmentioning
confidence: 99%
“…Figura 19: Funciones monopulso con un enventanado convencional y de Bayliss para la dirección de 0° La posibilidad de utilizar enventanados diferentes para el diagrama Suma y el Diferencia, junto con el efecto del nivel de los primeros lóbulos del diagrama Diferencia en la pendiente monopulso, ha sido objeto de estudio para reducir el error rms en el estimador de DoA. En [Takahashi_12], [Takahashi_13] y [Takahashi_18] se estudia un enventanado del diagrama Diferencia para que el error rms del estimador coincida con la cota de Cramer-Rao. En [Takahashi_18] se hace un análisis teórico de este enventanado y se presentan simulaciones para una dirección de apuntamiento de 0°.…”
Section: Número De Antenaunclassified