1986
DOI: 10.2140/pjm.1986.123.47
|View full text |Cite
|
Sign up to set email alerts
|

Derivations with invertible values in rings with involution

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
9
0
2

Year Published

1989
1989
2017
2017

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(11 citation statements)
references
References 1 publication
0
9
0
2
Order By: Relevance
“…Since any element which is invertible in A (+) is also invertible in A, then d is a derivation with invertible values of associative algebra A, so, by [1] A is either a division algebra D, or a D 2 , the 2 × 2 matrix algebra over a division algebra D. [6] it follows that if dim Z(A) A > 4, then < H(A, * ) >= A. Wedderburn-Artin theorem implies that if dim Z(A) A ≤ 4, then A is either a division algebra over Z(A) or Z(A) 2 , which correspondingly matches the cases 1) and 2), so from now on we may assume that d can be extended to a derivation of A. As a derivation of A, d also has invertible values, so by [8] A is an algebra of type 1), 2) or 3). The lemma is now proved.…”
Section: Preliminariesmentioning
confidence: 99%
“…Since any element which is invertible in A (+) is also invertible in A, then d is a derivation with invertible values of associative algebra A, so, by [1] A is either a division algebra D, or a D 2 , the 2 × 2 matrix algebra over a division algebra D. [6] it follows that if dim Z(A) A > 4, then < H(A, * ) >= A. Wedderburn-Artin theorem implies that if dim Z(A) A ≤ 4, then A is either a division algebra over Z(A) or Z(A) 2 , which correspondingly matches the cases 1) and 2), so from now on we may assume that d can be extended to a derivation of A. As a derivation of A, d also has invertible values, so by [8] A is an algebra of type 1), 2) or 3). The lemma is now proved.…”
Section: Preliminariesmentioning
confidence: 99%
“…They also characterized those division rings such that a 2 × 2 matrix ring over them has an inner derivation with invertible values. Further, associative rings with derivations with invertible values (and also their generalizations) were discussed in variety of works (see, for instance, [2]- [6]). So, in [2], semiprime associative rings with involution, allowing a derivation with invertible values on the set of symmetric elements, were given an examination.…”
Section: Alternative Algebras With Derivations With Invertible Valuesmentioning
confidence: 99%
“…Further, associative rings with derivations with invertible values (and also their generalizations) were discussed in variety of works (see, for instance, [2]- [6]). So, in [2], semiprime associative rings with involution, allowing a derivation with invertible values on the set of symmetric elements, were given an examination. In work [3] Bergen and Carini determined the associative rings admitting a derivation with invertible values on some non-central Lie ideal.…”
Section: Alternative Algebras With Derivations With Invertible Valuesmentioning
confidence: 99%
“…Берген, И. Н. Херстейн и Ч. Лански описали структуру ассоциативных колец, допускающих дифференцирования с обратимыми значениями. В дальнейшем результаты этой работы в ассоциативном случае получили обобщение в [2]- [6].…”
unclassified
“…В дальнейшем ассоциативные кольца, допускающие дифференцирования с обратимыми значениями (и их обобщения), были рассмотрены в [2]- [6]. Так, в [2] было описано строение полупростых ассоциативных колец с инволюцией, допускающих дифференцирование, значения которого на симметрических элементах кольца являются обратимыми. В работе [3] описаны ассоциативные кольца с дифференцированием, значения которого на некотором нецентральном лиевом идеале обратимы.…”
unclassified