Anodic Fenton treatment (AFT) is an electrochemical treatment employing the Fenton reaction for the generation of hydroxyl radicals, strong oxidants that can degrade organic compounds via hydrogen abstraction. AFT has potential use for the remediation of aqueous pesticide waste. The degradation rates of chloroacetanilides by AFT were investigated in this work, which demonstrates that AFT can be used to rapidly and completely remove chloroacetanilide herbicides from aqueous solutions. Acetochlor, alachlor, butachlor, metolachlor, and propachlor were treated by AFT, and parent compound concentrations were analyzed over the course of the treatment time. Degradation curves were plotted and fitted by the AFT kinetic model for each herbicide, and AFT model kinetic parameters were used to calculate degradation rate constants. The reactivity order of these five active ingredients toward hydroxyl radical was acetochlor approximately metolachlor > butachlor approximately alachlor > propachlor. Treatment of the chloroacetanilides by AFT removed the parent compounds but did not completely mineralize them. However, AFT did result in an increase in the biodegradability of chloroacetanilide aqueous solutions, as evidenced by an increase in the 5-day biochemical oxygen demand to chemical oxygen demand ratio (BOD5/COD) to>0.3, indicating completely biodegradable solutions. Several degradation products were formed and subsequently degraded, although not always completely. Some of these were identified by mass spectral analyses. Among the products, isomers of phenolic and carbonyl derivatives of parent compounds were common to each of the herbicides analyzed. More extensively oxidized products were not detected. Degradation pathways are proposed for each of the parent compounds and identified products.