2015
DOI: 10.1007/s11856-015-1236-y
|View full text |Cite
|
Sign up to set email alerts
|

Derived string topology and the Eilenberg-Moore spectral sequence

Abstract: Let M be any simply-connected Gorenstein space over any field. Félix and Thomas have extended to simply-connected Gorenstein spaces, the loop (co)products of Chas and Sullivan on the homology of the free loop space H * (LM ). We describe these loop (co)products in terms of the torsion and extension functors by developing string topology in appropriate derived categories. As a consequence, we show that the Eilenberg-Moore spectral sequence converging to the loop homology of a Gorenstein space admits a multiplic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
30
0
1

Year Published

2015
2015
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 13 publications
(31 citation statements)
references
References 34 publications
0
30
0
1
Order By: Relevance
“…Proof. The result [12,Theorem 8.6 (1) and (2)] enable us to obtain the commutative squares up to homotopy…”
Section: Naturality Of the Emssmentioning
confidence: 95%
See 3 more Smart Citations
“…Proof. The result [12,Theorem 8.6 (1) and (2)] enable us to obtain the commutative squares up to homotopy…”
Section: Naturality Of the Emssmentioning
confidence: 95%
“…We recall the product m i on the loop homology H * (L αi M ) = H * +di (L αi M ) defined by [12,Lemma 8.6] for the sign. Then, we see that…”
Section: Naturality Of the Emssmentioning
confidence: 99%
See 2 more Smart Citations
“…Dans un premier temps (section 2), nous établirons une description du dual du loop produit pour un espace de Gorenstein de dimension formelle n en termes de modèles de Sullivan (cf. [5,2,6]). Ensuite (section 3), nous donnerons le modèle minimal de Sullivan de l'espace E Γ lorsque M est un espace homogène G/H via une action de Γ sur le groupe de Lie compacte connexe G et finalement (section 3), nous indiquerons un exemple avec une action de Γ = S 1 sur G = U (n + 1) dépendant d'un paramètre λ = 0, 1.…”
Section: Introductionunclassified