Abstract. Borrowed context graph transformation is a simple and powerful technique developed by Ehrig and König that allow us to derive labeled transitions and bisimulation congruences for graph transformation systems or, in general, for process calculi that can be defined in terms of graph transformation systems. Moreover, the same authors have also shown how to use this technique for the verification of bisimilarity. In principle, the main results about borrowed context transformation do not apply only to plain graphs, but they are generic in the sense that they apply to all categories that satisfy certain properties related to the notion of adhesivity. In particular, this is the case of attributed graphs. However, as we show in the paper, the techniques used for checking bisimilarity are not equally generic and, in particular they fail, if we want to apply them to attributed graphs. To solve this problem, in this paper, we define a special notion of symbolic graph bisimulation and show how it can be used to check bisimilarity of attributed graphs.