Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden
Pontus Netzell,
Hussain Kazmi,
Konstantinos Kyprianidis
Abstract:As the demand for electricity, electrification, and renewable energy rises, accurate forecasting and flexible energy management become imperative. Distribution network operators face capacity limits set by regional grids, risking economic penalties if exceeded. This study examined data-driven approaches of load forecasting to address these challenges on a city scale through a use case study of Eskilstuna, Sweden. Multiple Linear Regression was used to model electric load data, identifying key calendar and mete… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.