2021
DOI: 10.1001/jamadermatol.2021.0195
|View full text |Cite
|
Sign up to set email alerts
|

Dermatologist Perceptions of Teledermatology Implementation and Future Use After COVID-19

Abstract: Teledermatology is an effective method for delivering health care, with strong evidence supporting its use, yet barriers have stalled implementation, including lack of reimbursement, liability concerns, and licensing restrictions. 1,2 The coronavirus disease 2019 (COVID-19) pandemic crisis led to rapid adoption of telemedicine to continue care while minimizing in-person contact. 3 Historically, most teledermatology studies have focused on store-and-forward models, whereas during the COVID-19 pandemic, regulato… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

1
68
1
2

Year Published

2021
2021
2023
2023

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 75 publications
(72 citation statements)
references
References 4 publications
1
68
1
2
Order By: Relevance
“…[17][18][19][20][21] Digital solutions to address this demand have been reflected by accelerated teledermatology adoption during the COVID-19 pandemic. 22,23 Machine learning algorithms have potential for automated diagnosis of skin mali gnancies through digital image analysis, and diagnostic accuracy of machine learning algorithms has been shown in the past 5 years to be comparable to, or even surpass, dermatologists in controlled experimental settings. [4][5][6][7][8][9] Publicly available skin image datasets, such as those hosted through the International Skin Imaging Collaboration (ISIC) archive, 13 are increasingly used to develop machine learning algorithms for skin cancer diagnosis.…”
Section: Introductionmentioning
confidence: 99%
“…[17][18][19][20][21] Digital solutions to address this demand have been reflected by accelerated teledermatology adoption during the COVID-19 pandemic. 22,23 Machine learning algorithms have potential for automated diagnosis of skin mali gnancies through digital image analysis, and diagnostic accuracy of machine learning algorithms has been shown in the past 5 years to be comparable to, or even surpass, dermatologists in controlled experimental settings. [4][5][6][7][8][9] Publicly available skin image datasets, such as those hosted through the International Skin Imaging Collaboration (ISIC) archive, 13 are increasingly used to develop machine learning algorithms for skin cancer diagnosis.…”
Section: Introductionmentioning
confidence: 99%
“…При опросе в мае и июне 2020 г. 591 практикующего дерматолога -члена AAD (American Academy of Dermatology) относительно влияния пандемии на ТД было выявлено, что ТД до пандемии использовали только 14,1% респондентов, а с началом COVID-19 -96,9%; 58,0% дерматологов предположили, что ТД будут использовать в дальнейшем вне зависимости от эпидемиогической ситуации; 72,0% врачей оценили гибридное консультирование как наиболее точное [3].…”
Section: теледерматология как часть телемедициныunclassified
“…En conclusion, les pratiques en dermatologie évoluent rapidement avec l’introduction de la téléconsultation qui s’est intensément développée en 2020 et 2021, avec une bonne adhésion des dermatologues [ 99 ]. La téléconsultation et la téléexpertise permettent de limiter les contacts lors de la pandémie, et de pallier les difficultés d’accès à une consultation face à face.…”
Section: Diversunclassified