2022
DOI: 10.18280/ria.360519
|View full text |Cite
|
Sign up to set email alerts
|

DermICNet: Efficient Dermoscopic Image Classification Network for Automated Skin Cancer Diagnosis

Abstract: The incidence of skin cancer is rapidly increasing worldwide. The relevance of Skin Cancer Diagnosis (SCD) and the difficulty in achieving an accurate and consistent diagnosis have resulted in significant research interest. Furthermore, automated detection or classification would be even more helpful in a diagnostic assistance system. This study develops an efficient Dermoscopic Image Classification Network (DermICNet) for automated SCD. The proposed DermICNet is a deep learning architecture with an efficient … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 23 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?