Like the vertebrate spinal cord, the insect ventral nerve cord (VNC) mediates limb sensation and motor control. Here, we applied automated tools for electron microscopy (EM) volume alignment, neuron reconstruction, and synapse prediction to create a draft connectome of theDrosophilaVNC. To interpret the VNC connectome, it is crucial to know its relationship with the rest of the body. We therefore mapped the muscle targets of leg and wing motor neurons in the connectome by comparing their morphology to genetic driver lines, dye fills, and x-ray holographic nano-tomography volumes of the fly leg and wing. Knowing the outputs of the connectome allowed us to identify neural circuits that coordinate the wings with the middle and front legs during escape takeoff. We provide the draft VNC connectome and motor neuron atlas, along with tools for programmatic and interactive access, as community resources.