2019
DOI: 10.48550/arxiv.1908.10860
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Descents of unipotent cuspidal representations of finite classical groups

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
9
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
2

Relationship

2
0

Authors

Journals

citations
Cited by 2 publications
(10 citation statements)
references
References 10 publications
1
9
0
Order By: Relevance
“…We obtain the following immediate consequence by Theorem 1.4, Proposition 3.2 and Theorem 1.1 in [LW3].…”
Section: Introductionmentioning
confidence: 60%
See 2 more Smart Citations
“…We obtain the following immediate consequence by Theorem 1.4, Proposition 3.2 and Theorem 1.1 in [LW3].…”
Section: Introductionmentioning
confidence: 60%
“…[GGP1,Theorem 16.1]) (c.f. [LW3] for details in this case). According to whether π and σ are complex irreducible representations of orthogonal groups or symplectic groups, the above Hom space is called the Bessel model or Fourier-Jacobi model.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…However, we can not get the complete answer in the Gan-Gross-Prasad problem directly in this way. In previous works [LW1,LW3], we have studied the Gan-Gross-Prasad problem of unipotent representations of finite unitary groups and in [LW2,Wang] for finite orthogonal groups and finite symplectic groups. In this paper, we will give a formula to reduce the Gan-Gross-Prasad problem of arbitrary representations to the unipotent representations, which is known in our previous work.…”
Section: Introductionmentioning
confidence: 99%
“…[GGP1,Theorem 16.1]) (c.f. [LW1,LW2] for details). If π and σ are complex irreducible representations of orthogonal groups, then the above Hom space is called the Bessel model.…”
Section: Introductionmentioning
confidence: 99%