2018
DOI: 10.18146/2213-0969.2018.jethc156
|View full text |Cite
|
Sign up to set email alerts
|

Describing Gender Equality in French Audiovisual Streams with a Deep Learning Approach

Abstract: A large-scale description of men and women speaking-time in media is presented, based on the analysis of about 700.000 hours of French audiovisual documents, broadcasted from 2001 to 2018 on 22 TV channels and 21 radio stations. Speaking-time is described using Women Speaking Time Percentage (WSTP), which is estimated using automatic speaker gender detection algorithms, based on acoustic machine learning models. WSTP variations are presented across channels, years, hours, and regions. Results show that men spe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
2

Year Published

2018
2018
2024
2024

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(5 citation statements)
references
References 0 publications
0
3
0
2
Order By: Relevance
“…This positive outcome allows considering the reliability of this gender detection system sufficient to perform large-scale gender equality descriptions, offering concrete perspectives for digital humanities. Detailed analyses realized using this framework goes beyond the scope of this paper and will be addressed in future works [24]. Early results obtained using 1 week of raw stream corresponding to 6 French TV channels and 8 radio stations highlighted several interesting tendencies: Speaking time was mainly attributed to male speaker, especially in radio material.…”
Section: Discussionmentioning
confidence: 97%
See 1 more Smart Citation
“…This positive outcome allows considering the reliability of this gender detection system sufficient to perform large-scale gender equality descriptions, offering concrete perspectives for digital humanities. Detailed analyses realized using this framework goes beyond the scope of this paper and will be addressed in future works [24]. Early results obtained using 1 week of raw stream corresponding to 6 French TV channels and 8 radio stations highlighted several interesting tendencies: Speaking time was mainly attributed to male speaker, especially in radio material.…”
Section: Discussionmentioning
confidence: 97%
“…Feature extraction was realized on audio excerpts sampled at 16KHz using SIDEKIT [18]. 24 Mel-scaled filter-banks coefficients were computed on 25ms sliding windows with a 10ms shift. Those coefficients were fed directly to CNN models while a second set of acoustic features (MFCC) was obtained by applying Discrete Cosine Transform (DCT) to those filterbank coefficients to extract 19 Mel-Frequency Cepstrums coefficients (MFCC), which were augmented with log energy.…”
Section: Feature Extractionmentioning
confidence: 99%
“…Studies of the gender distribution of fictional dialogue show that male characters speak more than female characters in films, television shows, radio shows, plays and books [1][2][3][4][5][6][7][8][9]. This inequality in representation perpetuates stereotypes that can negatively affect audiences' conceptions of gender and gender roles [10,11].…”
Section: Introductionmentioning
confidence: 99%
“…2 Parole superposée et genre : corpus et usages En informatique, la détection du genre est une tâche de classification qui consiste à évaluer si les caractéristiques acoustiques d'une voix sont plutôt proches de celles d'un homme ou d'une femme, ou éventuellement d'une troisième catégorie non identifiable (enfants, locuteurs non nommés). L'obtention des temps de parole en fonction des genres permet d'automatiser les analyses manuelles des sociologues et ainsi les étendre à des données massives (Doukhan et al, 2018). La détection de genre est également utile en prétraitement des systèmes de traitement automatique de la parole, pour permettre d'affiner les modèles au genre du locuteur et ainsi améliorer les performances.…”
Section: Introductionunclassified
“…Ces résultats montrent que la proportion de femmes et d'hommes dans les corpus étudiés n'est pas équilibrée. Cette observation est commune à plusieurs études(Doukhan et al, 2018) et induit un biais de donnée pour tout système entraîné sur celles-ci(Garnerin et al, 2019). Ce phénomène est amplifié par le fait que ces corpus précèdent les réglementations françaises sur l'égalité entre les femmes et les hommes 1 .On notera qu'un tiers des données des corpus ESTER2 et ETAPE ne disposent pas d'information sur le genre.…”
unclassified