2024
DOI: 10.1109/tnnls.2023.3282020
|View full text |Cite
|
Sign up to set email alerts
|

Description-Enhanced Label Embedding Contrastive Learning for Text Classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
3
2
1

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 49 publications
0
2
0
1
Order By: Relevance
“…Dalam metode ini, setiap kategori atau label diubah menjadi vektor biner dengan panjang yang setara dengan jumlah total kategori yang berbeda dalam variabel tersebut. Semua elemen vektor memiliki nilai nol, kecuali indeks yang sesuai dengan kategori, yang diwakili oleh angka 1 [14].…”
Section: One-hot Encodingunclassified
“…Dalam metode ini, setiap kategori atau label diubah menjadi vektor biner dengan panjang yang setara dengan jumlah total kategori yang berbeda dalam variabel tersebut. Semua elemen vektor memiliki nilai nol, kecuali indeks yang sesuai dengan kategori, yang diwakili oleh angka 1 [14].…”
Section: One-hot Encodingunclassified
“…introduce an attention mechanism that measures the compatibility of embeddings of input and labels. Additional information can be incorporated in learning label embeddings, such as label hierarchy (Chatterjee et al, 2021;Zhang et al, 2022a;Miyazaki et al, 2019) and textual description of labels (Zhang et al, 2023).…”
Section: Related Workmentioning
confidence: 99%
“…Nevertheless, task-specific label descriptions are often insufficient in real-world scenarios. Subsequently, Zhang et al [16] proposed a description-enhanced label embedding comparative learning method, which integrates external knowledge to obtain label description information. However, they acknowledged that the introduction of external knowledge may lead to unexpected fine-grained noise issues and therefore designed an interaction module to filter out the noise.…”
Section: Introductionmentioning
confidence: 99%