Today, whole-exome sequencing (WES) is used to conduct the massive screening of structural and regulatory genes in order to identify the allele frequencies of disease-associated polymorphisms in various populations and thus detect pathogenic genetic changes (mutations or polymorphisms) conducive to malfunctional protein sequences. With its extensive capabilities, exome sequencing today allows both the diagnosis of monogenic diseases (MDs) and the examination of seemingly healthy populations to reveal a wide range of potential risks prior to disease manifestation (in the future, exome sequencing may outpace costly and less informative genome sequencing to become the first-line examination technique). This review establishes the human genetic passport as a new WES-based clinical concept for the identification of new candidate genes, gene variants, and molecular mechanisms in the diagnosis, prediction, and treatment of monogenic, oligogenic, and multifactorial diseases. Various diseases are addressed to demonstrate the extensive potential of WES and consider its advantages as well as disadvantages. Thus, WES can become a general test with a broad spectrum pf applications, including opportunistic screening.