The pathway and the lifestyle of known enterococcus species are too complicated. The aim of the present study is to trace the path of pathogenicity of enterococci isolated from seven habitats (Cornu aspersum intestine; Bulgarian yoghurt; goat and cow feta cheese—mature and young, respectively; Arabian street food—doner kebab; cow milk; and human breast milk) by comparing their pathogenic potential. In total, 72 enterococcal strains were isolated and identified by MALDI-TOF, sequencing, and PCR. Hemolytic and gelatinase activity were biochemically determined. PCR was carried out for detection of virulence factors (cylB, esp, gls24, nucl, psaA, agg, gelE, and ace) and antibiotic resistance (erm, ermB, blaZ, vanA, aphA, mefA, gyrA, catpIP501, and aac6′-aph2″). Phenotypic antibiotic resistance was assigned according to EUCAST. Eleven representatives of the genus Enterococcus were identified: E. mundtii, E. casseliflavus, E. gilvus, E. pseudoavium, E. pallens, E. malodoratus, E. devriesei, E. gallinarum, E. durans, E. faecium, and E. faecalis. Twenty-two strains expressed α-hemolysis. Thirteen strains had the cylB gene. Only two strains expressed α-hemolysis and possessed the cylB gene simultaneously. Positive amplification for gelE was found in 35% of the isolates, but phenotypic gelatinase activity was observed only in three strains. All isolates showed varying antibiotic resistance. Only E. faecalis BM15 showed multiple resistance (AMP-HLSR-RP). Correlation between genotypic and phenotypic macrolide resistance was revealed for two E. faecalis strains.