Harrat Khaybar is an active monogenetic volcanic field in western Saudi Arabia that hosts spectacular monogenetic volcanoes and a Holocene volcanic cone with extensive lava fields. The volcanic region is a subject of intensive land use development, especially along tourism ventures, where the volcanic features are the key elements to utilize for increasing visitation rates to the region. The youngest eruption is suspected to be Holocene and occurred fewer than 5000 years ago based on the cross-cutting relationship between the youngest lava flows and archaeological sites. Lava flows are typical, from pāhoehoe to ‘a‘ā types with great diversity of transitional textural forms. Here, we recorded typical transitional lava flow surface textures from the youngest flows identified by digital-elevation-model-based terrain analysis, satellite imagery, and direct field observations. We performed lava flow simulations using the Q-LavHA plug-in within the QGIS environment. Lava flow simulations yielded satisfactory results if we applied eruptions along fissures, long simulation distances, and ~5 m lava flow thickness. In these simulations, the upper flow regimes were reconstructed well, but long individual lava flows were not possible to simulate, suggesting that morphological steps likely promoted lava ponding, inflation, and sudden deflation by releasing melts further along shallow syneruptive valley networks.