A novel designed microtensile specimen with electroplated structures is described here. It can be fit into a specially designed microtensile apparatus, which is capable of carrying out a series of tests on sub-micron scale freestanding thin films. Several thin films for microelectromechanical systems (MEMS) applications has been tested here including sputtered copper, gold, gold-chrome and tantalum nitride. All the metal specimens were fabricated by sputtering. For the tantalum nitride film samples, nitrogen gas was introduced into the chamber during the process of sputtering tantalum films on the silicon wafer. We have used copper, gold, 5% gold-chrome alloys and tantalum nitride thin films with thickness of 200-800 nm. The E values of the thin films tested here are consistent with the results from other measurement methods. The test results of metal specimens show the similar trend of the Hall-Petch prediction. However, the values of tantalum nitride thin films do not exhibit any systematic variation with respect to the thickness