2010
DOI: 10.1088/1748-3182/5/4/045007
|View full text |Cite
|
Sign up to set email alerts
|

Design and analysis of biomimetic joints for morphing of micro air vehicles

Abstract: Flight capability for micro air vehicles is rapidly maturing throughout the aviation community; however, mission capability has not yet matured at the same pace. Maintaining trim during a descent or in the presence of crosswinds remains challenging for fixed-wing aircraft but yet is routinely performed by birds. This paper presents an overview of designs that incorporate morphing to enhance their flight characteristics. In particular, a series of joints and structures is adopted from seagulls to alter either t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
18
0
1

Year Published

2014
2014
2022
2022

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 23 publications
(19 citation statements)
references
References 31 publications
0
18
0
1
Order By: Relevance
“…[171] Some of these principles can be mimicked with rigid motors and joints,but the introduction of soft materials offers designs with greater similarity to the flying animals. [172] By incorporating ap assive flexible membrane and active muscle-like components,s uch as shape-memory alloys or motor-driven elastic tendons,b at-mimicking robots have demonstrated sophisticated morphing schemes based on both passive and active mechanisms. [168,173] Whereas bats store the elastic energy in muscles on their wings,insects have completely passive wings made of thin membranes,a nd the elastic energy is stored and released through muscles attached at the wing base,t ot he thorax, or both.…”
Section: Angewandte Chemiementioning
confidence: 99%
“…[171] Some of these principles can be mimicked with rigid motors and joints,but the introduction of soft materials offers designs with greater similarity to the flying animals. [172] By incorporating ap assive flexible membrane and active muscle-like components,s uch as shape-memory alloys or motor-driven elastic tendons,b at-mimicking robots have demonstrated sophisticated morphing schemes based on both passive and active mechanisms. [168,173] Whereas bats store the elastic energy in muscles on their wings,insects have completely passive wings made of thin membranes,a nd the elastic energy is stored and released through muscles attached at the wing base,t ot he thorax, or both.…”
Section: Angewandte Chemiementioning
confidence: 99%
“…Vögel ändern ihre Flügelform über die aktive Bewegung der Gelenke, Fledermäuse spannen wirksam die Flügelfläche durch die Steuerung der im Flügel eingebetteten Muskelfasern, und Insekten haben Membranflügel mit intrinsischer Flexibilität, die sich der aerodynamischen Strömung passiv anpassen . Einige dieser Prinzipien können zwar mit starren Motoren und Gelenken nachgeahmt werden, jedoch liefert die Einführung weicher Materialien Designs mit größerer Ähnlichkeit zu fliegenden Tieren . Durch Integration passiver flexibler Membrankomponenten und aktiver muskelähnlicher Komponenten, wie Formgedächtnislegierungen oder von einem Motor angetriebene elastische Spannglieder, verfügen Fledermäuse imitierende Roboter über ein ausgeklügeltes Verformungssystem, das sowohl auf passiven als auch auf aktiven Mechanismen beruht .…”
Section: Weiche Maschinen Und Roboterunclassified
“…Many existing aerial vehicles do employ some kind of morphing wing [82,83], and others feature deployable wings [3,84]. However, wing deployment systems are often merely for storage, without the ability to refold, and most morphing concepts only vary the wing geometry slightly.…”
Section: Wing Foldingmentioning
confidence: 99%