Surrogate-assisted evolutionary algorithms have been paid more and more attention to solve computationally expensive problems. However, model management still plays a significant importance in searching for the optimal solution. In this paper, a new method is proposed to measure the approximation uncertainty, in which the differences between the solution and its neighbour samples in the decision space, and the ruggedness of the objective space in its neighborhood are both considered. The proposed approximation uncertainty will be utilized in the surrogate-assisted global search to find a solution for exact objective evaluation to improve the exploration capability of the global search. On the other hand, the approximated fitness value is adopted as the infill criterion for the surrogate-assisted local search, which is utilized to improve the exploitation capability to find a solution close to the real optimal solution as much as possible. The surrogate-assisted global and local searches are conducted in sequence at each generation to balance the exploration and exploitation capabilities of the method. The performance of the proposed method is evaluated on seven benchmark problems with 10, 20, 30 and 50 dimensions, and one real-world application with 30 and 50 dimensions. The experimental results show that the proposed method is efficient for solving the low- and medium-dimensional expensive optimization problems by compared to the other six state-of-the-art surrogate-assisted evolutionary algorithms.