To improve the performance and stability of the permanent magnet synchronous motor (PMSM), a new type of built-in permanent magnet synchronous motor (IPMSMB) is proposed. Firstly, the performance indexes of IPMSM, IPMSMA, and IPMSMB are compared by finite element analysis. The results show that the effective harmonic of the air-gap magnetic density of the motor increases when the rotor outer diameter is piecewise eccentric. At the same time, torque ripple and cogging torque decrease. Then the permanent magnet structure of the motor is changed on the basis of IPMSMA to form IPMSMB, which improves the output torque of the motor. Secondly, the Taguchi method is used to optimize the structural parameters of IPMSMB. After optimization, the output torque of IPMSMB is increased by 4.6%. The cogging torque and torque ripple are decreased by 45.5% and 25.7%, respectively. The consumption of permanent magnets is reduced by 7.74%. Finally, the rationality of the motor design is verified by the prototype experiment.