Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Precision agriculture is a breakthrough in digital farming technology, which facilitates the application of precise and exact amount of input level of water and fertilizer to the crop at the required time for increasing the yield. Since agriculture relies on direct rainfall than irrigation and the prediction of rainfall date is easily available from web source, the integration of rainfall prediction with precision agriculture helps to regulate the water consumption in farms. In this work, an edge computing model is developed for predicting soil moisture in real time and managing the water usage in accordance with rain prediction. A soil moisture prediction hybrid algorithm (SMPHA) has been developed that revolves around the decision-making techniques with live environmental parameters including weather parameters for the prediction of soil moisture through the impact of precipitation. Numerous algorithms with the combination of regression + clustering are estimated, and it is inferred that XGBoost + k-means outperforms other algorithmic combinations that is deployed in edge model. This model is used as an intermediary between the end IoT devices and cloud that results in the saving of computationally intensive processing performed on cloud servers. The servers located on a local edge network perform the developed algorithmic computations. Avoiding transmission over the cloud results in significant latency, response time, and computation power savings and therefore increases the efficiency of data transfer. The proposed edge computing model is implemented in Raspberry Pi as an edge, Heroku as cloud, and edge nodes as the combination of Pi with actuators and sensors. The monitored data from Pi are stored in MongoDB webserver that is controlled by Web dashboard. Finally, the developed model is implemented in cloud and edge where the edge server implementation performs better in terms of latency, bandwidth, throughput, response time, and CPU memory usage.
Precision agriculture is a breakthrough in digital farming technology, which facilitates the application of precise and exact amount of input level of water and fertilizer to the crop at the required time for increasing the yield. Since agriculture relies on direct rainfall than irrigation and the prediction of rainfall date is easily available from web source, the integration of rainfall prediction with precision agriculture helps to regulate the water consumption in farms. In this work, an edge computing model is developed for predicting soil moisture in real time and managing the water usage in accordance with rain prediction. A soil moisture prediction hybrid algorithm (SMPHA) has been developed that revolves around the decision-making techniques with live environmental parameters including weather parameters for the prediction of soil moisture through the impact of precipitation. Numerous algorithms with the combination of regression + clustering are estimated, and it is inferred that XGBoost + k-means outperforms other algorithmic combinations that is deployed in edge model. This model is used as an intermediary between the end IoT devices and cloud that results in the saving of computationally intensive processing performed on cloud servers. The servers located on a local edge network perform the developed algorithmic computations. Avoiding transmission over the cloud results in significant latency, response time, and computation power savings and therefore increases the efficiency of data transfer. The proposed edge computing model is implemented in Raspberry Pi as an edge, Heroku as cloud, and edge nodes as the combination of Pi with actuators and sensors. The monitored data from Pi are stored in MongoDB webserver that is controlled by Web dashboard. Finally, the developed model is implemented in cloud and edge where the edge server implementation performs better in terms of latency, bandwidth, throughput, response time, and CPU memory usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.