With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional rigid-body manipulators suffer from issues like backlash and friction, limiting their effectiveness at smaller-scale applications. Smart materials, particularly piezoelectric materials, offer promising solutions with their rapid response and high resolution, making them ideal for creating efficient piezoelectric transducers. Meanwhile, compliant mechanisms, which use elastic deformation to transmit force and motion, eliminate inaccuracies induced by rigid-body mechanisms. Integrating piezoelectric transducers and compliant mechanisms into piezoelectric compliant devices enhances UHPE system performance. This paper reviews the recent advances in piezoelectric compliant devices. By focusing on the utilization of piezoelectric transducers and compliant mechanisms, their applications in perception, energy harvesting, and actuation have been surveyed, and future research suggestions are discussed.