Solar home systems (SHSs) represent a viable technical solution for providing electricity to households and improving standard of living conditions in areas not reached by the national grid or local grids. For this reason, several rural electrification programmes in developing countries, including Namibia, have been relying on SHSs to electrify rural off-grid communities. However, the limited technical know-how of service providers, often resulting in over-or under-sized SHSs, is an issue that has to be solved to avoid dissatisfaction of SHSs´ users. The solution presented here is to develop an open-source software that service providers can use to optimally design SHSs components based on the specific electricity requirements of the end-user. The aim of this study is to develop and validate an optimization model written in MS Excel-VBA which calculates the optimal SHSs components capacities guaranteeing the minimum costs and the maximum system reliability. The results obtained with the developed tool showed good agreement with a commercial software and a computational code used in research activities. When applying the developed optimization tool to existing systems, the results identified that several components were incorrectly sized. The tool has thus the potentials of improving future SHSs installations, contributing to increasing satisfaction of end-users.