2015),"Effect of heat treatment on tribological behavior of zinc aluminum alloy reinforced with graphite and SIC particles for journal bearing", Industrial Lubrication and Tribology, Vol. 67 Iss 4 pp. 292-300 http://dx.If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
AbstractPurpose -The purpose of this study is to prepare new Fe-Cr-B alloys which have better wear resistance and investigate the wear mechanisms of these alloys tribotesting against SiC ceramic balls under dry sliding process. Design/methodology/approach -Fe-Cr matrix alloys were fabricated using powder metallurgy route. The tribological behaviors of Fe-Cr alloys tribotesting against SiC ceramic balls using a ball-on-disc tribotester were studied at different testing conditions. Meanwhile, microstructure, phases and morphology of worn surfaces were investigated. Findings -The element boron improved mechanical properties and tribological behavior of alloys. The friction coefficients of Fe-Cr matrix alloys did not show obvious difference. The specific wear rates of alloys decreased and then increased because of the brittleness of alloys with the increase of boron content. Fe-21 weight per cent Cr-7 weight per cent B alloy showed the best tribological properties in dry sliding. The wear mechanism of Fe-Cr alloy was plastic deformation and abrasive wear. However, the Fe-Cr-B alloys showed fatigue spalling characteristics. Originality/value -This paper reported a new, cheap and wear-resistant Fe matrix material to prepare mechanical parts in food and mining industrial fields.