In order to meet the high accuracy pixel-matching requirements of space-dimensional dual-coded spectropolarimeter, a dual-coded image pixel-matching method based on dispersion modulation is proposed. The mathematics of the dispersion power and the pixel matching is modeled. The relationship between different pixel-matching coefficients and the peak signal-to-noise ratio (PSNR) and structure similarity index measure (SSIM) of reconstructed images is analyzed. An imaging system experiment consisting of a digital micromirror device (DMD), a micro-polarizer array detector (MPA), and a prism–grating–prism (PGP) is built to reconstruct a spectral linear polarization data cube with 50 spectral channels and linear polarization parameters. The contrast ratio of the reconstructed spectropolarimeter image was raised 68 times against the ground truth. It can be seen from the reconstruction evaluation analysis that the spectral data and polarization data can be matched effectively by optimizing the dispersion coefficient of the PGP. The system can effectively reconstruct when the noise SNR is greater than 15 dB. The PSNR and SSIM of the reconstruction images can be improved by increasing the pixel-matching spacing. The optimal choice of the dual-coded pixel-matching spacing is one super-polarized pixel. The spectral resolution and quality of the spectropolarimeter are improved using the pixel-matching method.