Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: Gastroretentive drug delivery systems (GRDDSs) are designed to release the drug in the stomach over a prolonged time; thus, they can reduce drug dosing frequency and dose size and improve patient compliance. GRDDSs are also highly effective in enhancing the bioavailability of the drug that exhibits window absorption in specific segments of the gastrointestinal (GI) tract. Famotidine (FMT), an H2 receptor antagonist, is an example of these drugs. FMT is a slightly water-soluble drug but well soluble in an acidic medium. This research aims to formulate FMT gastro-retentive floating tablets (FMT-GRFTs) to improve the bioavailability and therapeutic activity of the drug and increase patients' adherence to treatment. In addition, the in vitro release behavior of the prepared FMT-GRFTs was quantitatively analyzed using the DDSolver software to assist in selecting the successful formulation that was then evaluated in vivo. Methods: The direct compression technique prepared numerous tablet formulations and was subjected to the pre-and post-compression evaluation. Data of FMT dissolution in the simulated gastric medium was analyzed by various kinetic models built in the DDSolver program. In addition, the simulated pharmacokinetics (AUC, MDT, and MRT), R2 adjusted, AIC, MSC, correlation of the residuals, and similarity factor (f2) were also generated. Results: The results revealed that FMT release from the candidate formula (FH3) fitted to the first-order kinetic model, with a high value of R2 adjusted and MSC and a low AIC. The release behavior exhibited the Fickian diffusion mechanism. The similarity factor showed no significant difference (p < 0.05) of the test sample compared to the reference product. Nevertheless, the simulated pharmacokinetic parameter, AUC, proved a two-fold enhancement in FMT bioavailability, with a significant increment in the MDT and MRT compared with the reference product. The FT-IR spectroscopy analysis indicated the absence of drug-excipients/polymer interaction. The in vivo X-ray studies on rabbits confirmed that the floating tablets showed nearly eight hours of gastric residence. Conclusion: DDSolver software was helpful in deciding the optimized formulation of FMT floating tablets. The radiological examination in rabbits for gastric retention was consistent with the release data analysis in vitro.
Background: Gastroretentive drug delivery systems (GRDDSs) are designed to release the drug in the stomach over a prolonged time; thus, they can reduce drug dosing frequency and dose size and improve patient compliance. GRDDSs are also highly effective in enhancing the bioavailability of the drug that exhibits window absorption in specific segments of the gastrointestinal (GI) tract. Famotidine (FMT), an H2 receptor antagonist, is an example of these drugs. FMT is a slightly water-soluble drug but well soluble in an acidic medium. This research aims to formulate FMT gastro-retentive floating tablets (FMT-GRFTs) to improve the bioavailability and therapeutic activity of the drug and increase patients' adherence to treatment. In addition, the in vitro release behavior of the prepared FMT-GRFTs was quantitatively analyzed using the DDSolver software to assist in selecting the successful formulation that was then evaluated in vivo. Methods: The direct compression technique prepared numerous tablet formulations and was subjected to the pre-and post-compression evaluation. Data of FMT dissolution in the simulated gastric medium was analyzed by various kinetic models built in the DDSolver program. In addition, the simulated pharmacokinetics (AUC, MDT, and MRT), R2 adjusted, AIC, MSC, correlation of the residuals, and similarity factor (f2) were also generated. Results: The results revealed that FMT release from the candidate formula (FH3) fitted to the first-order kinetic model, with a high value of R2 adjusted and MSC and a low AIC. The release behavior exhibited the Fickian diffusion mechanism. The similarity factor showed no significant difference (p < 0.05) of the test sample compared to the reference product. Nevertheless, the simulated pharmacokinetic parameter, AUC, proved a two-fold enhancement in FMT bioavailability, with a significant increment in the MDT and MRT compared with the reference product. The FT-IR spectroscopy analysis indicated the absence of drug-excipients/polymer interaction. The in vivo X-ray studies on rabbits confirmed that the floating tablets showed nearly eight hours of gastric residence. Conclusion: DDSolver software was helpful in deciding the optimized formulation of FMT floating tablets. The radiological examination in rabbits for gastric retention was consistent with the release data analysis in vitro.
Candesartan cilexetil (CC) is an angiotensin II-receptor blocker (ARB). The antihypertensive effect of CC 4-16 mg/day was as great as that of other once-daily dosage regimens. Candesartan cilexetil has high first-pass metabolism and low oral bioavailability. The bioavailability of such drugs may be significantly improved if delivered through the buccal route; hence mucosal delivery is one of the alternative methods of systemic drug delivery. This study’s objective was to develop mucoadhesive buccal tablets of candesartan cilexetil using carbopol-934P, hydroxyl propyl methyl cellulose (HPMC), Eudragit RLPO, and sodium carboxy methyl cellulose (Na-CMC) as mucoadhesive polymers. Prepared CC buccal tablet formulations were evaluated for an optimized system based on physicochemical properties, ex-vivo residence time, in-vitro, and ex vivo permeation studies. The evaluation parameters of the tablets were within the acceptable Pharmacopoeial limits. However, the swelling and bio-adhesive time were increased with increasing polymer concentrations. The in-vitro release research shown that buccal tablets with sodium carboxy methyl cellulose (Na-CMC) exhibited a higher release than all other formulations and have been considered as optimized CC formulation. The release mechanism from kinetic methods suggests that the drug release follows zero-order kinetics with a diffusion mechanism. Further, in-vivo research in animal fashions is required to prove the bioavailability performance of the formulation. Keywords: Candesartan cilexetil, mucoadhesive buccal tablets, first-pass metabolism, bioavailability.
The poor oral bioavailability of many drugs is mainly due to the poor aqueous solubility, chemical instability and pre-absorptive metabolism. Numerous approaches have been developed for enhancement of oral bioavailability and were currently in the clinical application. Even though, some drugs not meet the required clinical application due to the patient compliance and ineffective therapeutic levels. Vesicular delivery systems are considered as alternative delivery for the enhancement the bioavailability of this category of drugs. The enhanced bioavailability of the liphophilic drugs from the vesicular systems mainly due to the increased effective surface area of the drug in the presence of lipids, surfactants and co surfactants, enhanced lymphatic uptake, altered gastric motility and by virtue of their small particle size. Extensive literature is available for the properties, applications, and preparation and evaluation methods. This review mainly dealt with the reported drug loaded various vesicular systems such as liposomes, niosomes, lipid nanoparticles, self-emulsifying delivery system, nanosuspensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.