The health diagnosis of agricultural structures is critical to detecting damages such as cracks in concrete, corrosion, spalling, and delamination. Agricultural structures are susceptible to environmental degradation due to frequent exposure to water, organic effluent, farm chemicals, structural loading, and unloading. Various sensors have been employed for accurate and real-time monitoring of agricultural building structures, including electrochemical, ultrasonic, fiber-optic, piezoelectric, wireless, fiber Bragg grating sensors, and self-sensing concrete. The cost–benefits of each type of sensor and utility in a farm environment are explored in the review. Current literature suggests that the functionality of sensors has improved with progress in technology. Notable improvements made with the progress in technology include better accuracy of the measurements, reduction of signal-to-noise ratio, and transmission speed, and the deployment of machine learning, deep learning, and artificial intelligence in smart IoT-based agriculture. Key challenges include inconsistent installation of sensors in farm structures, technical constraints, and lack of support infrastructure, awareness, and preference for traditional inspection methods.