Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Curcumin is a natural product found in the rhizome of Curcuma longa (L) and other Curcuma spp. As a lipophilic molecule, it has greater affinity for polar, non‐polar, alkaline or extremely acidic organic solvents. Several studies indicate that curcumin has several benefits for human health, for example, against degenerative diseases, cancer and infectious diseases. To obtain a quality product with nutraceutical properties, it is necessary to know its physicochemical characteristics and preserve it from cultivation until ingestion by the human. However, its low solubility leads to low absorption, in this context, nanotechnological systems can contribute to increase curcumin bioavailability. This review aims to highlight important issues in all stages that curcumin goes through: from aspects related to its extraction, to its association with nanotechnology. Although curcumin extraction process is already well established, it is possible to observe that more and more research focused on increasing yield and being more environmentally friendly. Furthermore, curcumin's low absorption is notable due to its physicochemical characteristics, mainly due to its low aqueous solubility. However, its association with nanotechnology has shown to be promising and an increasingly growing trend, since the use of this “Indian solid gold” is the hope of many patients.This article is protected by copyright. All rights reserved
Curcumin is a natural product found in the rhizome of Curcuma longa (L) and other Curcuma spp. As a lipophilic molecule, it has greater affinity for polar, non‐polar, alkaline or extremely acidic organic solvents. Several studies indicate that curcumin has several benefits for human health, for example, against degenerative diseases, cancer and infectious diseases. To obtain a quality product with nutraceutical properties, it is necessary to know its physicochemical characteristics and preserve it from cultivation until ingestion by the human. However, its low solubility leads to low absorption, in this context, nanotechnological systems can contribute to increase curcumin bioavailability. This review aims to highlight important issues in all stages that curcumin goes through: from aspects related to its extraction, to its association with nanotechnology. Although curcumin extraction process is already well established, it is possible to observe that more and more research focused on increasing yield and being more environmentally friendly. Furthermore, curcumin's low absorption is notable due to its physicochemical characteristics, mainly due to its low aqueous solubility. However, its association with nanotechnology has shown to be promising and an increasingly growing trend, since the use of this “Indian solid gold” is the hope of many patients.This article is protected by copyright. All rights reserved
Breast cancer is a public health concern worldwide, characterized by increasing incidence and mortality rates, requiring novel and effective therapeutic strategies. Curcumin is a bioactive compound extracted from turmeric with several pharmacological activities. Curcumin is a multifaceted anticancer agent through mechanisms including the modulation of signaling pathways, inhibition of cell proliferation, induction of apoptosis, and production of reactive oxygen species. However, the poor water solubility and bioavailability of curcumin create important barriers in its clinical application. This review elaborates on the therapeutic potential of curcumin in breast cancer treatment, focusing on the efficacy of different administration routes and synergistic effects with other therapeutic agents. The intravenous administration of curcumin-loaded nanoparticles significantly improves bioavailability and therapeutic outcomes compared to oral routes. Innovative formulations, such as nano-emulsifying drug delivery systems, have shown promise in enhancing oral bioavailability. While intravenous delivery ensures higher bioavailability and direct action on tumor cells, it is more invasive and expensive than oral administration. Advancing research on curcumin in breast cancer treatment is essential for improving therapeutic outcomes and enhancing the quality of life of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.