2020
DOI: 10.15587/2706-5448.2020.205151
|View full text |Cite
|
Sign up to set email alerts
|

Design and implementation of the distributed system using an orchestrator based on the data flow paradigm

Abstract: Об'єктом дослідження даної роботи є розподілені системи під управлінням оркестратору на базі парадигми керування потоками даних, а також методи управління мікросервісами. Одним з найбільш проблемних місць сучасних розподілених систем є вибір методу управління логікою роботи мікросервісів та процесами взаємодії між ними. Існуючі концепції оркестрації та хореографії мікросервісів не дозволяють в повній мірі ефективно використовувати та розподіляти навантаження рівномірно по всій системі, що пов'язано у першу чер… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
3
0

Year Published

2021
2021
2022
2022

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 5 publications
0
3
0
Order By: Relevance
“…The purpose of the general data storage service is to allow applications to classify non-database data such as pictures, text, and compressed packages uploaded by users through SVM, and then store them through this service, so that these contents can be managed uniformly and reduce campus file data loss. The danger and migration difficulty [18][19].…”
Section: General Data Storage Service Based On Svmmentioning
confidence: 99%
“…The purpose of the general data storage service is to allow applications to classify non-database data such as pictures, text, and compressed packages uploaded by users through SVM, and then store them through this service, so that these contents can be managed uniformly and reduce campus file data loss. The danger and migration difficulty [18][19].…”
Section: General Data Storage Service Based On Svmmentioning
confidence: 99%
“…The methods, methods and algorithms of traditional distributed and parallel systems are not suitable for task assignment in IoT systems due to their own characteristics. Reinforcement learning methods allow you to solve the problem of building distributed systems due to the adaptive formation of sequences of computing nodes and corresponding computing tasks [2]. Khan NA proposes an optimal homotopy analysis algorithm using nonlinear reaction-diffusion systems.…”
Section: Introductionmentioning
confidence: 99%
“…is the input vector [11]. In a compact set  ,The accuracy of RBNN can be derived from all linear and nonlinear function regions [12]. Given a smooth nonlinear vector function, The data layer neural network can continuously approach the nonlinear quantitative function…”
mentioning
confidence: 99%