The increasingly serious water pollution problem makes efficient and information-based water quality monitoring equipment particularly important. To cover the shortcomings of existing water quality monitoring methods, in this paper, a mobile water quality monitoring system was designed based on LoRa communication and USV. In this system, the USV carrying water quality sensors was used as a platform. Firstly, the LoRa network is used to monitor water quality over a large area. Secondly, the unmanned surface vessel controls the position error within ±20 m and the velocity error within ±1 m/s based on the Kalman filter algorithm. Thirdly, the genetic algorithm based on improved crossover operators is used to determine the optimal operational path, which effectively improves the iterative efficiency of the classical genetic algorithm and avoids falling into local convergence. In the actual water surface test, its packet loss probability within a working range of 1.5 km was below 10%, and the USV could accurately navigate according to the preset optimal path. The test results proved that the system has a relatively large working range and high efficiency. This study is of high significance in water pollution prevention and ecological protection.