The diffuser and exhaust of low pressure steam turbines show significant impact on the overall turbine performance. The amount of recovered enthalpy leads to a considerable increase of the turbine power output, and therefore a continuous focus of turbine manufacturers is put on this component. On the one hand, the abilities to aerodynamically design such components are improved, but on the other hand a huge effort is required to properly predict the resulting performance and to enable an accurate modeling of the overall steam turbine and therewith plant heat rate. A wide range of approaches is used to compute the diffuser and exhaust flow, with a wide range of quality. Today, it is well known and understood that there is a strong interaction of rear stage and diffuser flow, and the accuracy of the overall diffuser performance prediction strongly depends on a proper coupling of both domains. The most accurate, but also most expensive method is currently seen in a full annulus and transient coupling. However, for a standard industrial application of diffuser design in a standard development schedule, such a coupling is not feasible and more simplified methods have to be developed. The paper below presents a computational fluid dynamics (CFD) modeling of low pressure steam turbine diffusers and exhausts based on a direct coupling of the rear stage and diffuser using a novel multiple mixing plane (MMP). It is shown that the approach enables a fast diffuser design process and is still able to accurately predict the flow field and hence the exhaust performance. The method is validated against several turbine designs measured in a scaled low pressure turbine model test rig using steam. The results show a very good agreement of the presented CFD modeling against the measurements.