The air-cooled system is one of the most widely used battery thermal management systems (BTMSs) for the safety of electric vehicles. In this study, an efficient design of air-cooled BTMSs is proposed for improving cooling performance and reducing pressure drop. Combining with a numerical calculation method, a strategy with a varied step length of adjustments (∆d) is developed to optimize the spacing distribution among battery cells for temperature uniformity improvement. The optimization results indicate that the developed strategy reduces the optimization time by about 50% compared with a strategy using identical ∆d values while maintaining good performance of the optimized system. Furthermore, the system’s pressure drop does not increase after the spacing optimization. Based on this characteristic, a structural design strategy is proposed to improve the cooling performance and reduce the pressure drop simultaneously. First, the appropriate flow pattern is arranged and the secondary outlet is added to reduce the pressure drop of the system. The results show that the BTMS with U-type flow combined with a secondary outlet against the original outlet can effectively reduce the pressure drop of the system. Subsequently, this BTMS is further improved using the developed cell spacing optimization strategy with varied ∆d values while the pressure drop is fixed. It is found that the final optimized BTMS achieves a battery temperature difference below 1 K for different inlet airflow rates, with the pressure drop being reduced by at least 45% compared with the BTMS before the optimization.