The variation of mutual inductance and load parameters will affect the transmission power and efficiency of the inductive power transfer (IPT) system. The identification of mutual inductance and load parameters is an essential part of establishing a stable and reliable IPT system. This paper presents a joint identification method of load and mutual inductance for the LCC-S IPT system, which does not require the establishment of primary and secondary communication and related control. Firstly, the resistance-inductance characteristics of the equivalent load of the rectifier are analyzed by simulation, and then the rectifier and system load are equivalent to the circuit model of resistance and inductance in series. Secondly, the characteristics of the reflected impedance are analyzed, and the functional relationship between the transmitter impedance and the rectifier impedance is established by using the ratio of the real part to the imaginary part of the reflected impedance, which realizes the decoupling of the load and the mutual inductance. Thirdly, the functional relationship between the equivalent impedance of the rectifier and the load resistance of the system is obtained by data fitting. Then, the equations of the above two functional relationships are combined. By measuring the voltage of the parallel compensation capacitor at the transmitting side, the current of the transmitting coil and the phase difference between the two, the battery load can be solved first, and then the mutual inductance can be calculated, so that the high-precision identification of the load and mutual inductance can be realized. Finally, an experimental platform of the LCC-S IPT system is built for experimental verification. The experimental results show that the maximum identification errors of mutual inductance and load are 5.20% and 5.53%, respectively, which proves that the proposed identification method can achieve high precision identification.