This work proposes a systematic approach to design a novel integral sliding mode controller (ISMC) for a single-ended primary-inductor converter (SEPIC) with only one tunable parameter where the upper and the lower bounds are derived. The designed surface results in a minimal chattering behaviour at the output voltage as well as at the duty cycle and allows for operating the SEPIC at a fixed switching frequency. The proposed controller can withstand up to a 70% variation in the input voltage and 100% variation on the load side in addition to superior performance for a cold start. The proposed controller and the corresponding mathematical formulation were simulated in a Simulink environment and experimentally tested via a scaled prototype. The proposed controller performance is also compared to a Type-II and integral Linear-Quadratic Regulators (LQR).