This paper proposes a cascaded dual closed-loop control strategy that incorporates time delay estimation and sliding mode control (SMC) to address the issue of uncertain disturbances in logistic unmanned aerial vehicles (UAVs) caused by ground effects, crosswind disturbances, and payloads. The control strategy comprises a position loop and an attitude loop. The position loop, which functions as the outer loop, employs a proportional–integral–derivative (PID) sliding mode surface to eliminate steady-state error through an integral component. Conversely, the attitude loop, serving as the inner loop, utilizes a fast nonsingular terminal sliding mode approach to achieve finite-time convergence and ensure a quick system response. The time-delay estimation technique is employed for the online estimation and real-time compensation of unknown disturbances, while SMC is used to enhance the robustness of the control system. The combination of time-delay estimation and SMC offers complementary advantages. The stability of the system is proven using Lyapunov theory. Hardware-in-the-loop simulation and flight tests demonstrate that the control law can achieve a smooth and continuous output. The proposed control strategy can be effectively applied in complex scenarios, such as hovering, crash recovery, and high maneuverability flying, with significant practicality in engineering applications.