This study addresses the pressing environmental problem of the emissions of ecotoxic heavy metals from high-temperature waste combustion processes, including incineration and pyrolysis. Such emissions pose a serious threat to ecosystems and human health. This study investigated the behaviour of the heavy metals Cu, Ni, and Pb during the combustion of various waste materials such as plastic waste, pharmaceutical waste, and pesticide waste. To limit the release of heavy metals into the exhaust gas stream, various additives were used: divanadium pentoxide (V2O5), borax (Na2B4O7), and their mixtures with calcium oxide (CaO). Additionally, this study examined the impact of the content of chlorine heteroatoms (Cl) in burned waste materials on the emission levels of Cu, Ni, and Pb. The findings shed light on the mobility of ecotoxic heavy metals in high-temperature waste incineration processes (1273, 1373 K) and offer insight into strategies to improve their immobilisation in grate residues. At a temperature of 1273 K, V2O5 with CaO reduced Pb emissions by ~65% for plastic waste and by ~40% for pesticide.