Additional information is available at the end of the chapter http://dx.doi.org/10.5772/48483
IntroductionIt is well known that the electrodynamic properties of SQUIDs (Superconducting Quantum Interference Devices) are obtained by means of the dynamics of the Josephson junctions in these superconducting system (Barone & Paternò, 1982;Likharev, 1986;Clarke & Braginsky, 2004). Due to the intrinsic macroscopic coherence of superconductors, r. f. SQUIDs have been proposed as basic units (qubits) in quantum computing (Bocko et al., 1997). In the realm of quantum computing non-dissipative quantum systems with small (or null) inductance parameter and finite capacitance of the Josephson junctions (JJs) are usually considered (Crankshaw & Orlando, 2001). The mesoscopic non-simply connected classical devices, on the other hand, are generally operated and studied in the overdamped limit with negligible capacitance of the JJs and small (or null) values of the inductance parameter. Nonetheless, r. f. SQUIDs find application in a large variety of fields, from biomedicine to aircraft maintenance (Clarke & Braginsky, 2004), justifying actual scientific interest in them.As for d. c. SQUIDs, these systems can be analytically described by means of a single junction model (Romeo & De Luca, 2004). The elementary version of the single-junction model for a d. c. SQUID takes the inductance L of a single branch of the device to be negligible, so that β = LIJ/Φ0 ≈0, where Φ0 is the elementary flux quantum and IJ is the average value of the maximum Josephson currents of the junctions. In this way, the Josephson junction dynamics is described by means of a nonlinear first-order ordinary differential equation (ODE) written in terms of the phase variable φ, which represents the average of the two gauge-invariant superconducting phase differences, φ 1 and φ 2 , across the junctions in the d. c. SQUID. By considering a device with equal Josephsons junction in each of the two symmetric branches, the dynamical equation of the variable φ can be written as follows (Barone & Paternò, 1982): where n is an integer denoting the number of fluxons initially trapped in the superconducting interference loop, τ=2πRIJt/Φ0=t/τ φ , R being the intrinsic resistive junction parameter, ψex=Φex/Φ0 is the externally applied flux normalized to Φ0 and iB= IB/IJ, is the bias current normalized to IJ. In what follows we shall consider zero-field cooling conditions, thus taking n=0. Eq. (1) is similar to the non-linear first-order ODE describing the dynamics of the gauge-invariant superconducting phase difference across a single overdamped JJ with field-modulated maximum current IJF (IJF=|cosπψex|) in which a normalized bias current iB/2 flows. This strict equivalence comes from the hypothesis that the total normalized flux ψ=Φ/Φ0 linked to the interferometer loop can be taken to be equal to ψex. However, being ( ) 12 ,we may say that the above hypothesis may be stated merely by means of the following identity: β=0. Therefore, for finite values of the parameter β, Eq....