Aiming at the problem of scanning distortion in X–Y galvanometer light detecting and ranging (Lidar) scanning system, we propose a method of image scanning distortion correction with controllable driving voltage compensation. Firstly, the geometrical optics vectors model is established to explain the principle of pincushion distortion in the galvanometer scanning system, and the simulation result of scanning trajectory is consistent with experiments. The linear relationship between the driving voltage and the scanning angle of the galvanometer is verified. Secondly, the relationship between the deflection angle of the galvanometer and the scanning trajectory and the driving voltage is deduced respectively, and an image scanning correction algorithm with controllable driving voltage compensation is obtained. The simulation experiment results of the proposed method show that the root-mean-square error (RMSE) and the corresponding curve between the scan value and the actual value at different distances, have a good correction effect for the pincushion distortion. Finally, the X–Y galvanometer scanning Lidar system is established to obtain undistorted two-dimensional scanned image and it can be applied to the three-dimensional Lidar scanning system in the actual experiments, which further demonstrates the feasibility and practicability of our method.